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RESUMO

De acordo com uma estimativa da OMS feita em 2018, um pedestre morre no trânsito a cada 106
segundos. Um número tão elevado que os países membros da Organização das Nações Unidas
definiram como objetivo reduzir pela metade esse número até o final da década, porém, para
reduzir este número, é necessário primeiro compreendermos os fatores que causam essas mortes.

Com o avanço da tecnologia de realidade virtual nas últimas décadas, óculos de realidade
virtual vem se tornando menores, mais capazes e mais baratos a cada ano. Por serem capazes
de proporcionar um ambiente seguro e controlado, são um excelente dispositivo para estudar o
comportamento dos pedestres. Neste trabalho, desenvolvemos uma plataforma para executar
simulações de travessia de pedestres, com a possibilidade de pedestres andarem tanto fisicamente
no mundo real ou atráves de controles. Em destaque, nossa plataforma permite a manipulação
de parâmetros em quatro cenários distintos, facilitando a análise de diferente cenários. Em
complemento, uma simulação de tráfego complexa acrescenta uma camada de realismo crucial
para a compreensão da interação entre pedestres e veículos.

No centro de nosso sistema, está um sistema de coleta de dados, que fornece aos
pesquisadores extensos logs e um sistema de replay para uma análise aprofundada dos pedestres
após a simulação. O resultado final é um simulador, criado para estudar vários cenários de forma
abrangente. A plataforma desenvolvida tem condições de avançar as análises do comportamento
dos pedestres, oferencendo a pesquisadores uma ferramenta sofisticada e versátil para a realização
de experimentos.

Palavras-chave: Simulação de pedestres. Realidade virtual. Simulação de trânsito. Comporta-
mento de pedestres.



ABSTRACT

According to a WHO estimation made in 2018, every 106 seconds a pedestrian dies on the road.
A number so large that the United Nations set the goal of halving it by the end of the decade, but
to be able to reduce this number, we need to first understand what causes those deaths.

With the advance of Virtual Reality in the past decades, head-mounted displays have
been growing smaller, more capable, and cheaper with each year. By being able to provide a safe
and controlled environment, they are an excellent device for studying pedestrian behavior. In this
work, we developed a platform to run crossing simulations, with the possibility for a pedestrian
to walk physically in the real world or with motion controllers. Notably, our platform allows for
the manipulation of parameters across four distinct scenes, facilitating the examination of diverse
scenarios. Complementing this, a complex traffic simulation adds a layer of realism crucial for
understanding the interplay between pedestrians and vehicles.

At the core of our system is a data collection system, providing researchers with extensive
logs and replays for in-depth analysis of pedestrian behaviour post-simulation. The end result
is a simulator crafted to study multiple scenarios comprehensively. The developed platform
stands poised to advance pedestrian behaviour analyses, offering researchers a sophisticated and
versatile tool to run experiments on.

Keywords: Pedestrian simulator. Virtual reality. Traffic simulation. Pedestrian behavior.
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1 INTRODUCTION

According to a WHO estimation, every 106 seconds a pedestrian dies on the road [2]. A number
so large that halving the number of deaths and injuries from road crashes by 2020 was defined as
one of the targets in the Sustainable Development Goals, adopted by all United Nations Member
States [1, goal 3.6]. But to be able to reduce those numbers we have to first be able to understand
the causes.

The motivations driving a pedestrian towards a crosswalk before traversing a road form
a complex interplay of variables. Questions arise regarding the impact of vehicle density, vehicle
speeds, distance to the crosswalk, and the time constraints individuals face. While efforts have
been made over the decades to analyze pedestrian behavior in real-world settings, these methods
are often impractical, costly, and may compromise subject safety[3]. Analyzing video camera
footage, though common, fails to capture the nuanced reasons behind road accidents [3], as each
pedestrian’s situation is unique.

To address these challenges, simulators have emerged as a valuable tool. Those devices
simulate the environment but use the user input to see how a person reacts to the created world.
Historically, simulators have been employed in the aviation community for almost a century[32,
c. 9.4.1]. They have been used extensively not only to facilitate learning but also to enable the
replication of challenging scenarios, aiding in understanding human reactions, and leading to
improvements in the safety of the crew and passengers.

The quest for realism in simulations has led to the rise of Virtual Reality (VR) devices,
offering an immersive experience superior to traditional setups, which before compromised of
multiple screen setups. Those devices consist generally of two screens placed very close to the
face of the user, like an enclosed glass, making the virtual world the only thing the user can
see. They may also contain several sensors to detect the user’s movement, being able to track all
movements that the user can do in the real world, having 6-degrees of freedom.

Those VR devices have been getting increasingly more powerful and cheaper, being
currently cheaper than building a multiple-screen setup. Using a VR device also has increased
user immersion compared to the alternatives [6]. In this work, we leverage the advancements in
VR technology to create a simulated environment that closely mimics real-world street crossings.

Beyond hardware considerations, the realism of the simulated world is paramount. This
work delves into the simulation of realistic streets, complete with authentic traffic scenarios,
providing a nuanced platform for understanding how pedestrians interact with and navigate
through dynamic environments. Furthermore, the developed program collects and stores the
crossing data, for later analysis. The platform developed aims to empower traffic researchers
with a powerful resource for in-depth analysis of pedestrian behaviour.

1.1 OBJECTIVES

This research aims to develop a VR application that simulates the traffic in a street realistically.
The primary goal of this simulation is to understand the intricacies of pedestrian behaviour
during street crossings. The overarching aim is to provide a platform that can identify conditions
contributing to an elevated risk for pedestrians, paving the way for subsequent research aimed at
mitigating these risks effectively.

For that, we will develop a realistic and dynamic traffic simulation, to create an authentic
environment to facilitate the study of the interplay between pedestrians and vehicles. Those
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vehicles should also be capable of interacting with one another and responding to environmental
cues, such as wielding to a pedestrian waiting to cross through a crosswalk.

The developed simulator should also have a robust data collection system, providing
researchers with extensive data to be able to discern critical factors influencing pedestrian risk.

1.1.1 Specific goals

As a set of goals to achieve our objective, the developed simulator should:

• Investigate strategies to enhance the affordability and accessibility of the simulator,
ensuring it caters to a broad user demographic.

• Explore techniques to maximize user immersion within the virtual world, enhancing the
realism of the simulation experience.

• Experiment with customization options within the simulator, allowing researchers to
tailor the simulated experience based on their specific requirements.

• Investigate methods to increase the complexity of traffic scenarios within the simu-
lator, providing a more nuanced understanding of pedestrian interactions in varied
environments.

• Experiment with randomization techniques to diversify simulator scenarios, increasing
the scenarios the simulator can analyze.

• Research and incorporate alternative test scenes, expanding the diversity of situations
the simulator can replicate and analyze

• Develop a streamlined mechanism for running multiples scenarios in quick succession,
facilitating experiments.

• Investigate metrics and methodologies for researchers to study pedestrian behavior
post-crossing, considering variations between studies.

1.2 STUDY OUTLINE

This study is structured in the following way:

Chapter 2 - Background provides a brief overview of the definition of virtual reality. It explores
the different types of virtual ecosystems and it gives a brief look at the evolution of
virtual reality. This chapter also presents the hardware that will be used for the proposed
system and provides insights into the chosen Game Engine that is used for the simulator
implementation.

Chapter 3 - Related Works this chapter reviews past approaches to studying pedestrian be-
haviour within virtual systems. By analyzing prior works, it seeks to contextualize the
proposed system, so we can improve on the current simulators.

Chapter 4 - Proposal describes our proposed system. It gives insights about the environment
created, describes how the vehicles move and the methods we employ for controlling
them, as well as how the user can interact with the world. Additionally, it describes the
log that is outputted from a crossing, and what goes into it.
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Chapter 5 - Results and validation in this chapter we will be talking about the end result of
this work, and validating the functionalities described in chapter 4.

Chapter 6 - Conclusion summarises the study’s proposal and achievements and offers an
analysis of what was created within the defined objectives. Furthermore, it suggests
opportunities for future research and possible enhancements to expand the simulator’s
capabilities.
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2 BACKGROUND

In this chapter, we will explore the definition of virtual reality and its differences from augmented
reality. We will also be taking a look at the past and current virtual reality devices, as well as
their strengths and drawbacks. Finally, we will be providing insight into the engine we choose for
the implementation of our simulator.

2.1 VIRTUALITY CONTINUUM

To investigate pedestrian behaviour while crossing a street, a way to avoid subjecting individuals
to the inherent risks of real-world testing is needed. For some time, those kinds of simulations
have been made using a multiple-screen setup to allow the users to see in multiple directions.
However, this approach has dwindled in popularity in the past few years. The main reason is
advancements in Virtual Reality devices, which currently allow for a more immersive experience,
while also being possibly cheaper.

But first, it’s important to define the concepts of virtual reality to better understand this
work. Paul Milgram and Fumio Kishino introduced the concept of "virtuality continuum" in
their work[21]. There, they defined this term as the continuum space that goes from reality to a
fully virtual environment, with Mixed Reality being everything in the middle of this spectrum, as
illustrated in the figure 2.1.

Figure 2.1: Representation of the virtuality continuum. Source: Laya Tremosa and the Interaction Design Foundation
[15].

As we walk through the continuum, we first encounter Augmented Reality (AR), which
consists of augmenting the real world with digital elements[15]. A noteworthy example is the
widely popular game Pokemon GO, developed by Niantic for iOS and Android, where players
could see "Pokemons" in the real world using their smartphone cameras. According to Forbes,
Pokemon GO was very popular, engaging 147 million users in May 2018 [26].

Beyond AR lies Augmented Virtuality (AV), wherein the virtual world incorporates
real or physical objects [15]. A good example of this would be being able to visualize a user’s
hand within a fully virtual world.

The Virtual Reality (VR) is then defined as a world consisting of only digital elements.
This is the spectrum of the continuum that this work will focus on. While other approaches have
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explored using AR in the past to study pedestrian behaviour [19], we decided to use a fully virtual
world. This allows us to simulate the full crossing sequence, by having the user walk through a
virtual and controlled street, in a way that the generated metrics can be translated into the real
crossing behaviour [3, 7, 19].

2.2 VIRTUAL REALITY SYSTEMS

The first use of VR hardware traces back to 1968 when Ivan Sutherland created a head-mounted
display (HMD) with miniature CRTs called "The Sword of Damocles" [25] (Figure 2.2). This
device allowed users to perceive three-dimensional spaces, by presenting two images at slightly
different angles and thus giving the perception of perspective. Even though stereo images are
important for a three-dimensional illusion, an image that changes in a natural way as the observer
moves his head is even more so [25]. So, Sutherland’s HMD also contained head position sensors
to be able to translate and rotate the objects accordingly. Sutherland’s HMD, while rudimentary
by today’s standards, laid the foundation for contemporary VR systems.

Figure 2.2: Sutherland’s Sword of Damocles HMD [25].

The fundamental structure of modern HMDs remains rooted in Sutherland’s HMD.
Comprising two (or sometimes one split) screens, lenses to focus and zoom the images, so it
can take more of the user’s field of view (FOV) and sensors for tracking the head’s translation
and rotation. Head-mounted displays are currently the main hardware used for VR, with large
companies like Sony, Microsoft, Valve, Meta, and Apple having their own devices.

In recent years, HMDs have become accessible to the general public and their usage has
been growing steadily. In the 2010s the advancement of the technology made that the first devices
fully capable of achieving 6 degrees of freedom1 and a visual fidelity never seen before. They
also introduced motion controllers, which the user can move freely, being used as the user’s hands
in the virtual world. Unfortunately, those high-fidelity devices required a powerful computer to
be able to render the games at the resolution and frame rate needed for a good experience, which
on top of the prices of those devices, made the public that could afford them quite limited. They
also made use of tracking stations to be able to properly track player movement, requiring a room
with properly placed sensors. Figure 2.3 shows how the tracking of those devices operates.

1Degrees of freedom here refers to the number of ways an object can move through the 3D space. Three of them
correspond to the rotational movement around the x (pitch), y (yaw), and z (roll) axes. Devices that can only track
the head through those three have 3DoF. Devices that can also track the translational motion along those axes, have
6DoF, making all of the user’s movement to be reflected in the virtual world.
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Figure 2.3: SteamVR™ Tracking bases, and a person with a HMD and motion controllers [30].

In June 2014, Google created a new platform for VR, giving a simpler experience, with
lower resolution and only giving 3 degrees of freedom, with their Cardboard platform (Figure 2.4).
The Google Cardboard was an accessory that transformed normal smartphones into viable VR
devices, by placing two lenses on the smartphone screen, making use of the device’s Gyroscope
and Accelerometer, to track rotation.

Figure 2.4: Google Cardboard [13].

This allowed for the general public to get a taste of VR technology. However, the low
resolution of those devices, caused by the splitting of the normal smartphone’s screen, as well as
the limited refresh rates, and the not-so-precise sensors, caused the experience to be not ideal.
The lack of proper tracking of the head’s translation, influenced strongly to cases of motion
sickness among users [16]. Although there have been studies to enable 6DoF using the Google
cardboard [23], it was still not fully achieved. While the Google Cardboard was simpler than
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some of the HMDs being shipped, those were a lot more affordable and accessible, making it one
of the first VR experiences for many people in the world.

In May 2019, the company Oculus released a powerful device that shaped the current
trend of VR, with the release of a 6DoF, standalone, high-resolution device, the first Oculus
Quest. This device made use of a powerful smartphone chip, which allowed more demanding
apps to be run at a resolution of 1440x1600 per eye and 72 frames per second [23]. To be able to
achieve 6DoF, the Quest makes use of 4 IR cameras to track the user’s movement by mixing the
data from the cameras using computer vision and its sensors.

Figure 2.5: Meta Quest 2 and its motion controllers [20].

Shortly after, in October 2020, a new version of this standalone device was released, the
Oculus Quest2, later renamed to Meta Quest 2 (Figure 2.5). Making use this time of a modified
smartphone chip, made with VR in mind, being able to run at a resolution of 1832 x 1920 per
eye, and a frame rate of 90 frames up to 120 frames per second. The device was also priced
cheaper than its predecessor at U$300.00, making it more affordable to the general public. The
Quest 2 can also connect wirelessly to a PC, being able to make use of more powerful hardware
if the user has access to it. On February 2023 Verge reported that the, now called, Meta had sold
nearly 20 million Quest headsets [14].

Because of its portability, power, and accessibility, we will be making use of a Quest 2
in standalone mode for the experiments on this work. However, the system developed works in
any modern VR Headset that supports the OpenXR standard.

2.3 GAME ENGINE

A game engine is a framework for creating virtual worlds, offering a suite of tools to facilitate user
interaction. They usually come with a world editor, where one can place 3D models and associate
them with scripts. Beyond visual elements, game engines incorporate a physics framework,
sparing developers from reinventing common physics calculations like gravity, traction, friction,
and drag. Additionally, engines also abstract various graphics APIs, enhancing cross-platform
compatibility and reducing hardware dependencies.

For the development of our simulator, three engines were considered: Unity 5, Unreal
Engine 4, and Godot 3. To choose between those, the following key aspects were considered:

VR support and documentation - While VR device usage has been on the rise in the past
decade, it still consists of a small portion of all the games released yearly. According
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to the user tags on Steam, only 12% of the games released from 2015 to 2022 have
VR support [24]. While all three engines support VR game creation, Unity and
Unreal Engine were favored due to more established official support from hardware
manufacturers. Godot, lacking an official Oculus SDK, required additional effort for
input method compatibility.

Asset library - Given the primary focus of this work is to create a platform to study the behaviour
of pedestrians, having a robust asset package facilitates development by providing
steadily usable 3D models, letting us focus our efforts on other parts of the system
besides 3D modeling. Unity boasts the most extensive asset library, having over 50
thousand entries in the 3D category [29], followed by Unreal Engine with close to 40
thousand entries in all categories [10], and Godot having only around 2 thousand items
[27].

A large community - A big community of developers creating programs on the same platform
increases the chance of someone already having found some of the same problems
as ours, and documenting the possible solutions. This is even more important when
developing to a relatively new device, with a heavy performance requirement, since it
has to render a world at close to 4k resolution while having only a mobile chip and form
factor. According to the Unity CEO, in 2018, more than 50 percent of mobile games,
and more than 60% of AR/VR content were built in Unity [8].

Considering those factors, we ended up choosing Unity 5 for the development of our
simulator. Its robust VR support, extensive asset library, and large and active community align
with the project’s objectives, ensuring a solid foundation for our simulator.
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3 RELATED WORKS

As the usage of VR devices grows, so does the use of them in research. In the past few years, there
have been a significant number of attempts to study pedestrian behaviour, in the safe environment
that the virtual world provides. In special, we have been seeing a growth in the number of works
that study the difference in pedestrian behaviour between automated vehicles (AV) and vehicles
with a human driver.

Deb et al. [7] made a study in 2017 about the efficacy of virtual reality in pedestrian
safety research. They developed a simulator in Unity, using an HTC Vive HMD, with the
intent to test pedestrian behaviour when crossing through a four-way intersection with pedestrian
crosswalks and traffic and pedestrian signals. In their simulator, the vehicles would first go
through a green signal, after some time, the traffic signal would turn red and the pedestrian green,
then, a last vehicle would come that could either stop in one of the lanes or go through the red
signal. Their simulator, calculated data on the minimum gap between the pedestrian and vehicles,
the number of collisions, walking speed, and crossing time, as well as gathered the subjective
experience of the participants through three questionnaires.

Deb et al. concluded that the participants walked realistically, by having an average
walking speed that matches the real-world data. Their questionnaire also concluded that the users
found the virtual environment to be a realistic pedestrian simulator. The study confirms overall
the effectiveness of the usage of Virtual Reality in the research of pedestrian behaviour.

Tran et al. [28] realized a review in 2021 of virtual reality studies on autonomous
vehicle-pedestrian interaction. The authors reviewed 31 studies made from 2010 to 2020. They
performed a systematic analysis to identify the current coverage and assessed the evaluation
measured. With their findings, they presented a set of recommendations for implementing VR
pedestrian simulators and proposed directions for future research.

The review by Tran et al. identified study gaps in the current literature in relation to the
following points:

Scalability : the majority of the current studies focused only on the interaction between a single
pedestrian with a single vehicle, suggesting that new simulators should handle complex
traffic situations, where multiple vehicles and pedestrians cross paths.

Mixed traffic : mixed traffic consisting of vehicles with different levels of automation.

Environmental conditions : the majority of studies have been conducted during daytime hours.
Other conditions of weather and time should be tested in scenarios where vehicle
movements are difficult to observe.

Vehicle behaviour in VR : more studies should consider pedestrian behaviour and have the
vehicles adapt to the environment by making use of, e.g. ray casting.

Tran et al. also suggest that vehicles should simulate human-like driving behaviour,
develop traffic with appropriate complexity by including more moving traffic, studies should
consider familiar elements and traffic cultures which may have differences where an unsignalized
crosswalk can be a safe or unsafe situation, create a social atmosphere and utilize of noise
to increase the user’s presence. He also summarized the diverse factors which influences on
pedestrian behaviour within a simulator, as shown in figure 3.1.
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Figure 3.1: Summary of the different factors influencing pedestrian experience and behavior. Source: Tran et al.
[28]

Angulo et al. [3] made a study in 2023 using a virtual reality simulation as a tool for
understanding and evaluating pedestrian safety and perception at midblock crossing. In their
work, they compared the real-world data of a midblock crossing and a replica made with a VR
simulator. On their simulator, the vehicles traveled at a constant 40 km/h with spawns based on
the real-world arrival distribution, acquired through video data. They used the gap between two
vehicles to verify what was considered an acceptable distance between two vehicles for a safe
crossing.

The work of Angulo et al. concluded that the gap acceptance distribution between the
real world and the VR simulator was statistically similar. Similar to the work of Deb et al. [7],
they also found the crossing speeds to match those of the real world. Angulo et al. survey results
also reported high levels of immersion and realism. Those results indicate that the users of the
VR simulator made consistent and realistic decisions while crossing the street.
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4 PROPOSAL

In this chapter, we will explore how the simulator we made work and behave, the considerations
and decisions we had to make, and how we chose to log the data from a crossing. In section
4.1 - Environment, we will explore the virtual world created to immerse the user. While on
section 4.2 - Running Experiments, we will explore how researchers can set up the simulator to
run a batch of tests on examinees to study their behaviours in different situations, adapting the
simulator to their needs. Following this, in the section 4.3 - Car Simulation, we will explore
how we increased the complexity and realism of the traffic on the simulator, and how the vehicles
behave in the world. At the end, in section 4.4 - Logging, we will explore how we made the data
of a crossing available for researchers to work on, and the implementation of a replay system to
the simulator.

4.1 ENVIRONMENT

In this section we will define and explain how the street environment is created, discussing
the models utilized and performance considerations (4.1.1); what is the crossing goal of the
pedestrian and where the crossing start (4.1.2); which scenes we made available (4.1.3); what
type of crosswalk we used in our simulator (4.1.4); the multiple vehicle models and their different
speed profiles (4.1.5); how the vehicles are instantiated on the street (4.1.6); how the player can
move to cross the street (4.1.7), and the audio created to increase the user immersion (4.1.8).

4.1.1 World

An important aspect of every VR simulator is to create a realistic world for the users to feel
immersed in. The street should look and feel real. For this, the aspect rates of the objects are
quite important, since the view height is the same as the one the user is used to in the real world.
It’s also important that some elements that we are used to seeing in the real world be present,
even if they feel not very important at first, like power cables.

The art style of the models should also be consistent, so some objects don’t seem out of
place. To achieve the points listed, we had to choose carefully which asset pack to use. While
being realistic is important, we need to remember that our target hardware is still a mobile
device, so it’s not powerful enough for ultra-realistic graphics at a high resolution, and decreasing
the resolution may cause discomfort and motion sickness for some users. For that reason, we
should have a simple but consistent art style, with a modular design that allowed us to place
the environment in the way we wanted. The width of a street lane in the model we chose is,
approximately, 4.5 meters. Figure 4.1 gives a quick look at the street environment we created.

Another important aspect of the world is its illumination. While dynamic light sources
that generate dynamic shadows and reflexes look good, it is quite performance-intensive. So
instead of using dynamic light sources, all the lights and shadows of our world are baked into the
scene models. This causes the unfortunate fact that the vehicles don’t cast shadows and their
headlights also don’t illuminate the street on the night scene. This was a trade-off that we had to
make to allow the game to run at the target frame rate of the Quest 2 at native resolution, instead
of being dependent on a powerful computer, which would increase significantly the cost to run
our simulator.
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Figure 4.1: A view at the street level of the one way straight street taken from the unity editor.

4.1.2 Goal and Start Positions

In the context of simulating pedestrian behavior during street crossings, our approach involves
creating a designated endpoint for the pedestrian journey rather than merely reaching the opposite
side of the road, since we usually have a goal location when crossing a street. To achieve this,
we selected a recognizable and compact destination—a bus station. The choice of a bus station
not only ensures ease of identification for the player but also allows for it to be moved through
the virtual scene, thanks to its compact size. The crossing is considered successfully completed
when the player reaches a predefined location within the bus station.

To facilitate the goal detection, we implemented a box detector surrounding the bus
station, shown in Figure 4.2. When the player enters this goal box, an event is triggered, signaling
the successful achievement of the crossing goal. The dimensions of the goal box are set at 3
meters in width, 3 meters in height, and 4 meters in length.

Since we wanted to allow for experiments to be run at room scale, with the players
walking in real life to move through the virtual world, we chose to put the default position of the
goal straight ahead of the start position of the pedestrian. In scenes that have a raised crosswalk,
they are also put close enough to both, the start position and the goal, that the player could
possibly walk to in a limited space. However, as we discuss in the section 4.2, those values can
be easily changed by the examiners. The default start position and goal of those scenes can be
seen in Figure 4.3.

4.1.3 Scenes

To increase the variety of studies that can be done on our simulator, we designed four scenes to
allow the studies of crossing at different conditions.

The first scene is a unidirectional straight street, identified by the name ’OneWayStraight-
Street’, on the middle of each we have a raised crosswalk (section 4.1.4). The second scene,
identified by ’OneWayStraightStreetNight’, is a copy of the first one but at night, to measure the
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Figure 4.2: Bus stop model and goal detector box.

impact between different light conditions. In the third scene, identified by ’TwoWayStreet2’, we
have a bi-directional, with two lanes, straight street, so here the pedestrian needs to carefully look
at the traffic coming from both sides, it also has a raised crosswalk in the middle. The last scene,
identified as ’OneWayTurn’ has a 90-degree turn, which, if the start position or goal is placed
close to the turn, may limit the time of visibility of coming vehicles. The Figure 4.4 shows the
turn and night scenes environment.

Vehicles were placed in advance in all scenes, so right at the beginning of a crossing
there will be already vehicles passing through the player’s location.

4.1.4 Raised Crosswalk

A common case of study is testing what makes a pedestrian walk to a crosswalk and cross with
more safety, or cross directly where he is, getting to their objective faster, but increasing their
risks. Unfortunately, in Brazil, the number of vehicles that wield to a crosswalk in certain regions
is very low. A research made in the São Paulo city showed that only 28,3% of vehicles wielded to
the pedestrian [12]. In Brasília, those numbers are better, but still far from ideal. A study made
in Brazil’s capital indicates a wielding rate of 57,48% [22].

Those numbers are generally better on a raised crosswalk since the vehicles need to slow
down before crossing it. For this reason, and to also give some variety to the vehicle’s speed
profiles, we decided to make all the crosswalks of our simulator raised. When a vehicle comes
close to a raised crosswalk, they will reduce their speeds to around 25km/h, to not hit the bottom
of the vehicle on the street, accelerating right after going through the crosswalk.

Those crosswalks have a detector box on them, which detects when a pedestrian is
waiting to cross. When a pedestrian is waiting, the coming cars will stop, wielding the right of
way to the pedestrian, making them then able to safely cross to the other side.

Because of this, the pedestrian start position should not be placed directly ahead of them,
but rather at a small distance, creating a case where the pedestrian needs to walk more, taking a
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Figure 4.3: Default player start position (blue circle), goal and raised crosswalk.

Figure 4.4: Night scene on the left, 90 degree turn scene on the right.
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little more time, to cross safely. This also gives a good study case, by placing the start position
and goal closer or further from the crosswalk, we can study what is a distance that the majority
of pedestrians would be willing to walk to it, giving important data about crosswalk placement.

4.1.5 Vehicle Types

As discussed in the study review made by Tran et al. [28], a missing aspect of the current studies
is to have different models and colors of the vehicles, to study the impact of those elements on
the crossing of pedestrians. So, to improve on those points, our simulator can spawn between
four different vehicle models, and it has 12 different colors for each model.

Two of those vehicles’ models, also have different behavior, one going up to 50% faster
than the delimited street speed, and the other moving at a speed 25% slower than the one defined.
This increases the variety of the vehicles, and increases the transit complexity. With this, we
have the following vehicle types and models:

0 - Normal : its target speed is the same defined as the path nodes (section 4.3.1). The possible
models are a compact vehicle or a SUV (Figure 4.5).

1 - Fast : its target speed is 50% faster than the one defined by the path node. The model of this
vehicle is a muscle car (Figure 4.6).

2 - Slow : its target speed is 25% slower than the one defined by the path node. The model of
this vehicle is a Van (Figure 4.6).

Figure 4.5: Compact car model on the left, SUV model on the right.

The approximate dimensions of the vehicles are the following:

Compact car : 1.76m wide, 1.4m high, 4.07m long.

SUV : 1.8m wide, 1.6m high, 4.6m long

Muscle car : 2m wide, 1.35m high, 5.3m long.

Van : 2.4m wide, 1.9m high, 4.85m long.
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Figure 4.6: Muscle car model on the left, Van model on the right.

4.1.6 Vehicle Spawn

To introduce variability and enhance realism across scenes, vehicles are dynamically spawned at
random intervals at the start of each lane, provided this space is unoccupied. Each lane operates
independently, allowing for simultaneous spawns in different lanes. The default spawn interval
ranges from 1 to 5 seconds.

To ensure consistent comparisons between different test instances within the same
scene, a fixed seed is utilized for the random spawning algorithm. This deliberate choice aids in
maintaining reproducibility and facilitating a reliable assessment of pedestrian behavior across
different trials. Notably, while vehicle types and materials adhere to a predetermined set, the
non-deterministic nature of the Unity physics engine may result in slight variations in spawn
times, especially if a vehicle occupies a space for an extended period. This seed may also be
changed when setting up a test environment, as detailed in Section 4.2.

In addition to temporal variability, the vehicle type is also subject to randomization.
By default, there is a 10% chance of spawning a vehicle with a speed exceeding the default,
and a separate 10% chance of spawning a slower vehicle. These default values offer a balanced
mix of vehicle speeds, creating a dynamic traffic environment. As part of the experiment’s
adaptability, researchers can modify these probabilities, tailoring the traffic conditions to specific
study requirements (Section 4.2).

4.1.7 Player Movement

To maximize the realism of our simulator, we designed it with the capability for users to navigate
by physically moving in the real world. Leveraging the Quest 2’s translation tracking, the virtual
camera aligns seamlessly with the user’s movements, ensuring a lifelike crossing experience.

With that said, a space of close to 10m is needed to do the crossing, which we know is
not a space that all laboratories can afford to have. So, we also added support to moving through
the Quest 2 analog controllers. In this mode, the user will move at a constant speed of 1.5m/s,
which is close to the mean speed of a pedestrian while crossing an unidirectional street [5]. While
the direction of the movement will follow the player’s face.

4.1.8 Audio

An important factor for immersion is to make use of other human senses to give a better feeling
of presence. With that in mind, we added a sound to the vehicle engine, which is added to each
vehicle in the scene [17]. Those audio sources make use of Unity’s built-in Doppler effect, giving



25

the sensation that the cars are coming close to the user and then passing him. This also helps the
pedestrian to know that a vehicle is coming closer without having to look directly at it.

Those engine sounds were also slightly modified to each vehicle, by increasing or
decreasing volume and pitch, giving each vehicle model a unique sound profile. The Van model
also has a unique sound to represent its different motor characteristics.

4.2 CREATING EXPERIMENTS

In this section, we will explain how our simulator defines a sequence of experiments to be run,
and how it behaves while running them.

4.2.1 Defining Experiments

In the context of conducting experiments with a group of participants, a standardized test routine,
where an experiment can be run after another, is often essential. For that reason, and to allow the
simulated environment to be customized according to the researchers’ needs, the simulator is
able to read a sequence of scenes, each containing parameters to modify the virtual environment.
The definition of those scenes and parameters is done through a JSON file, called ’runner.json’.

This file contains a list of ’scenes’ dictionaries, which have the following format and
can contain specifications for the following items:

sceneName : a string containing one of the four scenes identifiers described in section 4.1.3.

maximumSpeed : an integer representing the target speed that the nodes will define.

goalPosition : a dictionary representing the center point of the goal on the world, it contains
three floats described by the letters: x, y and z.

goalRotation : a dictionary representing the rotation of the goal, it contains three floats described
by the letters: x, y and z.

playerPostion : a dictionary representing the center point of the pedestrian’s spawn on the
world, it contains three floats described by the letters: x, y and z.

playerRotation : a dictionary representing the rotation of the pedestrian’s spawn, it contains
three floats described by the letters: x, y and z.

spawnMin : a float representing the minimum time between vehicle’s spawn (section 4.1.6)

spawnMax : a float representing the minimum time between vehicle’s spawn (section 4.1.6)

fastVehicleSpawnChance : an integer between 0 and 100 representing the chance of a fast car
being spawn (section 4.1.6).

slowVehicleSpawnChance : an integer between 0 and 100 representing the chance of a slow
car being spawn (section 4.1.6).

randomSeedLeft : an integer representing the seed of the vehicle instantiator on the left lane.

randomSeedRight : an integer representing the seed of the vehicle instantiator on the right
lane.

Below, you can see an example of a ’runner.json’ file:
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1 {
2 "scenes": [
3 {
4 "sceneName": "OneWayStraightStreet",
5 "maximumSpeed": 50,
6 "goalPosition": {
7 "x": 2.53, "y": 0, "z": 107.89
8 },
9 "goalRotation": {

10 "x": 0, "y": 0, "z": 0
11 },
12 "playerPosition": {
13 "x": -12.84, "y": -0.826, "z": 107.46
14 },
15 "playerRotation": {
16 "x": 0, "y": 0, "z": 0
17 },
18 "spawnMin": 1.0,
19 "spawnMax": 5.0
20 "fastVehicleSpawnChance": 10,
21 "slowVehicleSpawnChance": 10,
22 "randomSeedLeft": 33,
23 "randomSeedRight": 3
24 },
25 {...},
26 ...]
27 }

4.2.2 Running Experiments

After defining the scenes sequence and their parameters, the simulator app can be opened the
experiments can be executed. Right when starting the app, the simulator will read the first scene
and its parameters and start it. Then, when a player finishes the crossing of this scene, be it by
getting to the goal or by being run by a vehicle, a menu (Figure 4.7) will pop in front of him and
the physics simulation will stop, while also logging the information about this run. This menu
will show him the result of the crossing (success or crash), the time it took, and two options: go
to the next scene, or watch the replay of his crossing (section 4.5).

Those steps will repeat until there are no more scenes defined on the runner file. At this
point, after the end of the last crossing, a message will congratulate the user for ending the exam,
and prompt a replay of the whole exam run, which would normally be run by a different person.

4.3 CAR SIMULATION

In order to get realistic human behavior to the environment described, it’s important for the cars
to behave naturally [28]. For that, the cars of this simulator are subject to the physics simulation
present in the Unity engine and have a non-constant velocity. For accelerating or decelerating
a vehicle, torque or brake forces are applied directly to the car’s wheels. The vehicle is also
subject to drag and friction. Different vehicle models also have different weights and wheel sizes,
changing their acceleration and deceleration profiles.

This physics simulation is great for increasing the realism, but it adds to the complexity
of our system, since now vehicles behave differently from one another, so they need to react to
one another to not crash. Since they are also subject to friction, some braking and acceleration
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Figure 4.7: Crossing success menu.

may cause variations to their traction, causing slight variations in their forward vectors, which if
not handled would accumulate during the simulation and make some cars leave their delimited
street path.

To handle all this, we created a system which handles the vehicles’ control logic,
consisting primarily of two elements. The first one is a path navigation approach that uses
checkpoints to be able to keep the cars on a predefined path, while the second is a fuzzy logic
system making use of Unity’s ray cast for a car to be able to notice if it’s going to hit another one
and handle acceleration changes accordingly.

4.3.1 Path Navigation System

The path navigation system is a simple node-based path that the cars consume as checkpoints.
The cars trace a straight vector to the node location, adjusting its wheels to turn towards the
target as needed. The nodes also contain the vehicle’s maximum speed information, which is the
maximum speed the cars should be from the last node until this new one. When a car passes
through a node, it consumes it and then starts seeing the maximum speed and position of the next
one in route. The node path of the straight one way street can be seen in Figure 4.8.

Figure 4.8: Nodes path. The line represents the full path the cars should follow, while the cubes are the nodes itself.
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To be able to keep the vehicle in route and do turns as needed, we have to control the
wheel’s angle. Making also sure that small traction losses don’t make the cars leave the desired
path during a long street. For this, we create a vector from the vehicle position to the node and
then use the normalized X point to multiply the maximum angle the car’s wheel can turn. The
maximum angle a wheel can turn was set to 30 degrees, since this is the maximum value for
most passenger vehicles. A visualization of the steer vector is shown in Figure 4.9

𝑡𝑢𝑟𝑛𝐴𝑛𝑔𝑙𝑒 = 30 ∗ 𝑠𝑡𝑒𝑒𝑟𝑉𝑒𝑐𝑡𝑜𝑟.𝑥

|𝑠𝑡𝑒𝑒𝑟𝑉𝑒𝑐𝑡𝑜𝑟 | (4.1)

where:
𝑡𝑢𝑟𝑛𝐴𝑛𝑔𝑙𝑒 the turn angle to be applied to each front wheel.

𝑠𝑡𝑒𝑒𝑟𝑉𝑒𝑐𝑡𝑜𝑟 the vector between the car position and the target.
(4.2)

Figure 4.9: A car intentionally moved out of its path. The blue line represents the ’steerVector’. The white line is its
ray cast, so the actual front vector in this frame.

4.3.2 Ray Cast System

While the path navigation system makes sure the vehicles stay on the road, it doesn’t do much
to keep one from hitting another. Since it has different target velocities, the node changes are
actually a critical point, where a car can suddenly brake faster than the other, causing the car on
the back to hit it.

This second system comes to fix that. The approach we used is inspired by the fuzzy
logic described by Walotek, J. et al [31]. In his work, he described how to make an Artificial
Intelligence (AI) system that controls a vehicle through a circuit, using fuzzy logic and seven-ray
casts. In our case though, since our path is always fixed and thus controlled better with the node
described in the Path Navigation System, we can reduce the number of ray casts to only one. This
allows us to detect the distance between a car and the one in front of it, as well as the velocity
and acceleration differences between those two. A visualization of the vehicles’ ray cast can be
seen in Figure 4.10.

Since our system is designed to work with a wide range of velocities, the distance of the
ray cast is not fixed. While setting it to detect objects 3m ahead could be useful at 30km/h, it
may be too late at 80km/h, so instead of trying to get a good value, we used as a basis the "secure
distance" between two vehicles suggested by Brazil’s defensive driving guide, which is of two
seconds [4]. This means that the faster a vehicle moves, the bigger the distance it will try to keep
from the in front of it, as shown in Figure 4.11
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Figure 4.10: Vehicles with their "keep out" ray casts. White means that no vehicle is in range, red that they are too
close from a vehicle, and green that they are seeing a crosswalk.

To calculate the distance that the car will move in 2s, we used a simplified physics model
to calculate the rectilinear motion of the vehicle, with the distance of the ray being defined as the
multiplication of the vehicle’s velocity multiplied by the desired time (2s). This means that we
are ignoring the acceleration of this calculation. This was done because adding it to the formula
caused some unrealistic behavior of the vehicle changing between braking and accelerating too
many times because it knew it would get too close in the future. The velocity of the vehicle is
also not updated in every physics frame, but instead every 5 frames, this is done to ignore some
extreme variations that may happen because of the interpolation of the vehicle in short frames.

Figure 4.11: The faster a car is moving, the bigger the ray it casts.

When a vehicle detects that there is another ahead of it, it uses the front vehicle speed as
its target speed, instead of the usual path node-defined value. This change to maximum velocity
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is enough to not hit the vehicle, and as the one ahead of it accelerates, the distance between the
vehicles will naturally increase - since we don’t take into account accelerations in this formula
until the ray cast doesn’t detect it anymore. Then, the vehicle goes back to its usual behaviour of
being at a speed close to the maximum defined by the node, repeating this process along its path.
The vehicles’ speed control process is explained in more detail at the section 4.3.4

It’s important to note here that the system’s desired objective, is not to have a car that can
drive perfectly in a very mechanical way. Instead, what we want in this simulation are cars that
drive the closest to a human as possible. It’s not common for drivers to give lots of small pressing
of brakes and gas, but instead, they generally start pressing with a little force and increase until
they get the desired effect.

The simplifications done in the distance calculations end up helping us to get the desired
behaviour, since the moment a vehicle detects a vehicle ahead of it, it is a little too late to be able
to keep a perfect 2s distance. So it will start braking slowly but will have to increase the force as
it gets closer, giving us a behaviour similar to a human changing speeds.

4.3.3 Vehicle States

In order to control the vehicles’ speed, we define the vehicles’ move state as being in one of 5
states. This allows us to easily adjust which forces should be applied to the current vehicle in a
frame. Those states are:

• 0 - Inertia: No forces are applied by the controller, but the vehicle is still subject to
external forces like drag and friction.

• 1 - Accelerating: We are applying torque to the front wheels in order to increase the
vehicle’s speed.

• 2 - Breaking: We are applying brake at all four wheels of the vehicle.

• 3 - Stopping: We are breaking if the intent of zeroing the vehicle’s speed.

• 4 - Stopped: The vehicle speed can be considered as zero.

The state of a vehicle is defined by the following rules:

1. The target speed is equal1 to 0 and the vehicle speed is equal1 to 0: MoveState <- Stopped

2. The target speed is equal1 to 0 and the vehicle speed is not equal1 to 0:
MoveState <- Stopping

3. The vehicle’s speed is bigger than its target velocity plus the speed margin:
MoveState <- Breaking

4. The vehicle’s speed is bigger than its target velocity less the speed margin, but lesser
than the target velocity plus the speed margin: MoveState <- Inertia

5. Otherwise: MoveState <- Accelerating

1Approximately equal, since we’re handling with floating point values.
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4.3.4 Controlling the vehicles speed

Now that we have defined the vehicle’s target speed and its state, we need to be able to break at
the correct time in order to not hit the one ahead of it. For that, we make use of the kinematic
equations for linear motion, adjusting the forces as we get closer or farther away from the goal.
The objective of this algorithm is to move the vehicle in such a way that it hits a target speed
close to a target position. The target position of a vehicle is defined as the next path node, if
there isn’t any car in its ray cast (section 4.3.2), or otherwise as the front car’s position.

A human driver only breaks quickly in emergencies, since it’s uncomfortable for the
passengers of the vehicle. Also, when a driver stops their car it’s generally done by reducing the
speed gradually to stop in the intended spot, e.g. close to the crosswalk line. In the same way,
our autonomous vehicles should behave similarly. So we need to gradually increase or decrease
the braking force until we stop at the desired spot. For this, we will first calculate the difference
between the time to get to the spot with our current speed and acceleration, and the time to get to
the desired speed. After this, we will update the breaking force accordingly to how close we
are to getting the speed at the exact spot, that is, how close the difference between those two
calculated times is to zero.

For the calculation of the time that we are expected to get to the target with our current
velocity and acceleration, we make use of the following kinematic equation of motion:

𝑑 = 𝑣𝑖 ∗ 𝑡 +
1
2
∗ 𝑎 ∗ 𝑡2 (4.3)

where:
𝑑 is the distance between the vehicle and its target.
𝑣𝑖 is the current vehicle’s velocity.
𝑡 is the time to the target position.
𝑎 is the current vehicle’s acceleration.

(4.4)

isolating the time t:

𝑡 =
−𝑣𝑖 ±

√︃
𝑣2
𝑖
+ 2 ∗ 𝑎 ∗ 𝑑
𝑎

(4.5)

since we are handling with time, we can only focus on the positive root, so the final form of our
equation is:

𝑡 =
−𝑣𝑖 +

√︃
𝑣2
𝑖
+ 2 ∗ 𝑎 ∗ 𝑑
𝑎

(4.6)

With the time to the target position in hand, we then calculate the time that it will take
to get to the target velocity. For this, we use the kinematic equation below:

𝑣 𝑓 = 𝑣𝑖 + 𝑎 ∗ 𝑡 (4.7)
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where:
𝑣 𝑓 is the target velocity
𝑣𝑖 is the current vehicle’s velocity.
𝑎 is the current vehicle’s acceleration.
𝑡 is the time to the target velocity.

(4.8)

isolating the time t:
𝑡 =

𝑣𝑖 − 𝑣 𝑓

−𝑎 (4.9)

Now that we have both the time to the target position and the time to the target velocity,
we use the difference of those two as a factor to increase the torque, or break force, until the
difference is close to 0. This is done using the equation below:

𝑓 𝑜𝑟𝑐𝑒 < −𝑚𝑎𝑥(𝑚𝑖𝑛( 𝑓 𝑜𝑟𝑐𝑒 + ( 𝑓 𝑜𝑟𝑐𝑒/10) ∗ 𝑡𝑖𝑚𝑒𝐷𝑒𝑙𝑡𝑎, 𝑏𝑎𝑠𝑒𝐹𝑜𝑟𝑐𝑒 ∗ 4), 1) (4.10)

where:
𝑓 𝑜𝑟𝑐𝑒 is the breaking force

𝑏𝑎𝑠𝑒𝐹𝑜𝑟𝑐𝑒 is a constant which define the minimum and maximum force applied
𝑡𝑖𝑚𝑒𝐷𝑒𝑙𝑡𝑎 is the calculated time difference.

(4.11)

The max function in the above equation exists for when the vehicle stops before getting
to the target position. In this case, the root of the equation 4.6 becomes negative and without a
real solution. To circumvent this situation, when we do not get to the object we start reducing the
break force by setting the time delta to -1. The maximum then guarantees that we will not start
accelerating by putting a negative break force.

For the acceleration, we don’t need to hit a speed at a specific spot, so here we just
gradually increase our acceleration to a maximum until we get to the vehicle’s desired speed.
The equation for this is the following:

𝑓 𝑜𝑟𝑐𝑒 < −𝑚𝑖𝑛( 𝑓 𝑜𝑟𝑐𝑒 + 𝑏𝑎𝑠𝑒𝐹𝑜𝑟𝑐𝑒/10, 𝑏𝑎𝑠𝑒𝐹𝑜𝑟𝑐𝑒 ∗ 4) (4.12)

Notice that it’s intentionally very similar to the breaking one, with the exception of not
using a calculated time delta. This is done because in both cases we are simulating the behaviour
of a driver pressing the gas or brake pedals. With the difference that when accelerating he only
wants to get to a determined speed to get to his destination as fast as possible. While when he is
breaking he wants to stop at a determined spot our match another speed. A demonstration of the
stopped vehicles is shown in Figure 4.12.

4.4 LOGGING

In order to study the behaviour of a pedestrian using the simulator, our system creates at the end
of a scene two log files, containing the data about how the crossing happened. Those log files
are separated into two types, a small JSON log file containing the results of the crossing, and a
bigger one that is a replay of the frames created on the scene.
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Figure 4.12: Vehicles stopped while waiting for a pedestrian to cross.

4.4.1 Results Log

This log file’s main goal is to give a quick look at the results of a test scene. Here we output
information about the duration of the crossing, whether it ended in a crash or not, the distance of
the car that got the closest to the pedestrian, all the positions and state of the vehicles at the end,
and the position of the pedestrian on the world.

The resulting json file has the following format and content:

date : a string containing the date of when this scene run ended, with the following format:
yyyyMMddThh_mm_ss

scene : a string containing a descriptor of the scene asset name. Its value can
be: "OneWayStraightStreet", "OneWayStraightStreetNight", "TwoWayStreet2",
"OneWayTurn".

replay : a string containing the name of the replay file. (section 4.5)

endTime : a float which shows the time in seconds that the test run ended, starting from 0.

hasCrashed : a boolean indicating if the scene ended with a crash or not.

closestCarDistance : the distance, in meters, between the vehicle who got the closest to the
pedestrian and the pedestrian.

cars : a list containing dictionaries with the information at the final moment about all the vehicles
who were active when the scene ended, the information is given in the following format:

id : an integer representing an unique identifier for this vehicle on this test run.
carType : an integer representing the enumerator of the type of this vehicle. 0 being a

normal vehicle, 1 being a faster vehicles, and 2 being a slower vehicle.
moveState : an integer representing the enumerator of the final state of the vehicle

(section 4.3.3).
speed : a float representing the vehicle speed.
acceleration : a float representing the vehicle acceleration.
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motorTorque : a float representing the torque being applied to the vehicle’s wheels.
breakForce : a float representing the force being applied on the vehicle’s wheels in

order to reduce its speed.
position : a dictionary representing the center point of the vehicle on the world, it

contains three floats described by the letters: x, y and z.

player : a dictionary containing information about the pedestrian’s position and to where its
looking. The format is the following:

position : a dictionary representing the center point of the pedestrian on the world, it
contains three floats described by the letters: x, y and z.

rotation : a dictionary representing the camera rotation of the pedestrian, that is, where
the pedestrian is facing. It contains three floats described by the letters: x, y and z.

Below you can see an example of a log outputted by the simulator.
1 {
2 "date":"2023-11-25T17_59_13",
3 "scene":"OneWayStraightStreetNight",
4 "replay":"replay_log_2023-11-25T17_59_13.json",
5 "endTime":3.425032138824463,
6 "hasCrashed":true,
7 "closestCarDistance":0.0,
8 "cars": [
9 {"id":99,

10 "carPrefabId":1,
11 "carMaterialId":0,
12 "carType":0,
13 "moveState":2,
14 "speed":7.650308609008789,
15 "acceleration":-2.5024702548980715,
16 "motorTorque":0.0,
17 "breakForce":278.7091369628906,
18 "position":{"x":-2.449937105178833,"y":0.003030717372894287,
19 "z":-13.877348899841309}
20 },
21 {...},
22 ...],
23 "player":{
24 "position":{"x":-7.763314247131348,"y":-5.960464477539063e-8,
25 "z":101.0302963256836},
26 "rotation":{"x":0.0,"y":0.7071068286895752,"z":0.0}}
27 }

4.5 REPLAY SYSTEM

While the log described in the last section is useful for getting a quick look at what caused the end
of the crossing, it lacks further details and metrics that may be needed for some researchers, like
vehicles’ gap sizes, in seconds, and crossing speed [3], or gap between vehicle and participants,
in meters [7]. Unfortunately, there is currently no standard on the metrics used to study the
behaviour of pedestrians [28]. So, since our main goal is to provide a platform that allows
researches to study pedestrian behaviour as they want, instead of trying to predict the metrics that
the researches will need or want to use, we opted for giving all the information about the positions
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of the vehicles and the pedestrian along the time of the crossing. For this, we implemented a
replay system in our simulator.

A replay system allows both researchers and examinees to analyze a crossing in detail.
But first, let’s discuss what is a replay system and the two approaches we could take to implement
it.

A replay system is primarily a system that records a scene sequence and then allows it
to be replayed similarly to recording a video and then playing it later on [9]. Though here, we
use the game engine to replay it. This allows the scene to be seen in various angles and positions.

To implement a replay system in unity, we can follow one of the two main approaches:
Input-Based or State-based [9].

In an input-based system, we capture the initial state of the objects and then the inputs
by the players [9], in our case that would mean recording only the player position, and then the
world would react to those inputs in the same way it did at first, relieving then the scene that
the user experienced. This approach has a low memory footprint, it has some problems though.
Because we are only recording the player input, this approach needs to have a deterministic
game or engine, for the world to have the exactly same behaviour every time [9]. Our simulator
makes use of the Unity default physics system, which is, unfortunately not deterministic, and
the behaviour of the vehicles is also frame-time dependent in our world. That is, if a frame
ends up being late, vehicles can start breaking a little later than in the last run, which will cause
differences that accumulate over time. This approach also has another significant drawback for
us, it wouldn’t allow the data we are recording to be analyzed outside of the simulator, in bulk.

So the approach we implemented for our simulator is a State-based system. Here, we
record the position and rotation of all moving objects on the scene along the time and then replay
it in the exactly same order. This approach has the disadvantage of using more memory, though
this can be reduced by storing the data at a lower frame rate than the one played. [9], but in
our case, having all the positions being recorded is a big advantage. By storing all the vehicles’
positions and the pedestrian’s position along the time, a researcher can plot those points the way
he wants, being able to see them in another software, possibly reducing it to only two dimensions
for ease of view. This also allows any metric to be calculated, since we are outputting all the
movements that occurred during the crossing. If a researcher wants to, e.g. calculate the gap
size between the vehicles, he can use the kinematic equation to calculate the time between the
vehicles, using the current values for their acceleration and speed.

The replay system we implemented, records a frame at each 0.05s (20 frames/second),
to reduce memory usage. Considering this frame time, a vehicle moving at the maximum default
speed of 50km/h, may move at most 70cm between each frame.

In order to store the data to be analyzed by researchers, we use a simple JSON file. This
JSON file consists of two lists, one containing the frame information, and the other information
needed to recreate the scene at the engine, like the prefab and material the vehicle uses. The
format of each frame element is the following:

player : a dictionary containing the player position and rotation, in the following way:

position : a dictionary representing the center point of the pedestrian on the world, it
contains three floats described by the letters: x, y and z.

rotation : a dictionary representing the camera rotation of the pedestrian, that is, where
the pedestrian is facing. It contains four floats described by the letters: x, y, z and w.

cars : a list containing dictionary with information about the vehicles active on the current
frame. Each car entry has the following format:
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position : a dictionary representing the center point of the vehicle on the world, it
contains three floats described by the letters: x, y and z.

rotation : a dictionary representing the rotation of the vehicle. It contains four floats
described by the letters: x, y, z and w.

id : an integer representing an unique identifier for this vehicle on this test run.
speed : a float representing the vehicle current speed.
acceleration : a float representing the vehicle current acceleration.

frameDuration : A float describing how long is the time of the between the end of the last
recorded frame and the start of the recording of this one.

The list containing the information to recreate the scene at the scene has the following
format:

id : an integer representing an unique identifier of a vehicle on this test run.

details : a dictionary containing the information needed to instantiate the vehicle on the simulator.
It contains the following information:

carPrefabId : an integer that points that a vehicle model prefab. If this is a vehicle
with a default speed profile, then 0 represents a SUV, and 1 represents the small
vehicle.

carMaterialId : an integer that point to a vehicle material, which is used to give their
colors variance.

carType : an integer representing the enumerator of the type of this vehicle. 0 being a
normal vehicle, 1 being a faster vehicles, and 2 being a slower vehicle.

Below, you can see an example of a replay file outputted by the simulator:
1 {
2 "frames":[
3 {"player":
4 {"position":{"x":-12.84000015258789,"y":-5.960464477539063e-8,
5 "z":107.45999908447266},
6 "rotation":{"x":-0.1271669864654541,"y":0.695626974105835,
7 "z":-0.016566216945648195,"w":0.7068644762039185}},
8 "cars":[
9 {

10 "position":{"x":-2.3114371299743654,"y":-0.005701422691345215,
11 "z":31.846420288085939},
12 "rotation":{"x":-0.00003174791345372796,"y":0.00173636572435498,
13 "z":-0.00001980801607714966,"w":0.9999985694885254},
14 "id":86,
15 "speed":0.028882600367069246,
16 "acceleration":0.28882601857185366
17 },
18 {...},
19 ...],
20 "frameDuration":0.053286951035261155
21 },
22 {"player": {...}, "cars": [...], "frameDuration":0.05541764944791794},
23 ...],
24 "info":[
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25 {"id":86,"details":{"carPrefabId":0,"carMaterialId":0,"carType":1}},
26 {"id":87,"details":{...}},
27 {...},
28 ...]
29 }

To replay the scene on the simulator’s engine, we go through each frame of the JSON file,
instantiating any new vehicle or removing the older ones. Then, to make the viewing experience
of the replay on the simulator less prone to motion sickness caused by the low frames per second
and to make the viewing experience more enjoyable, we interpolate the movement of the objects
during the duration of the frame. This way, the vehicles move at the usual target frames per
second of our simulator, instead of being limited by the replay file frames, making it seem like
they’re moving by the physics simulation used during the actual crossing. The player’s movement
is represented through a simple human model, that moves and turns accordingly to the stored
information.
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5 RESULTS

In the last chapter, we presented the simulator we developed as a platform to allow further
studies on the behaviour of pedestrians. Although the main function of the simulator is the study
of psychological and behavioural patterns, our focus in this work was the development of the
platform, with the main result being the platform developed and presented in the last chapter.
With that in mind, experiments to gather and analyze those behavioural patterns were not done at
this work, being a future work topic.

In this chapter, we will then be validating the functionalities described in Chapter 4,
making sure they work as intended and as described.

5.1 VALIDATION

5.1.1 Experiments runner

An important aspect of the simulator is its high customization and ease of setting up experiments.
To validate those aspects, we modified the value of a custom "runner.json" file, and ran the
simulator on the Unity editor, to validate if the described parameters were being set as described
in the file.

After making sure the values were correctly changed, and the positions of objects also
moved in the world correctly, we created a sequence of eight scenes and ran it on the Quest 2 two
times, validating that the scene order was the same as the one defined and that the experiment
sequence was able to run without any hiccups.

Figure 5.1: Vehicles instants after beings spawned, with spawnMin and spawnMax set to 20s.

By setting the spawn rates of the fast vehicles and slow to 100% and 50%, we could
verify that only those vehicles’ types were being spawned, validating the parameter change, and
the spawn of the vehicles. Changing the spawn time also gave the correct result, setting the
minimum and maximum value to 20 seconds, we were able to verify that the vehicles of both
lanes spawned at the exactly same time, with 20s between spawns (Figure 5.1).
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Altering the maximumSpeed also works as intended, with a speed of 0km/h making the
vehicles not move.

5.1.2 End States

A scene in our simulator can end in two ways, getting to the goal position, or being hit by a car.
To validate the first one, we walked until the goal, verified visually that the next scene

menu did open, and also verified the log states, which listed correctly that we didn’t get hit, the
closest car distance was 1.92m, and that our end position is on the goal box defined by the runner.
With the goal center position defined as x: 2.53 and z: 107.89, the logged position of the player
at the end of the scene was x: 0.89 and z: 107.46, which is within the goal boundaries (section
4.1.2). By running the replay we also can see that the pedestrian model is within the goal.

Figure 5.2: The end of a replay were the pedestrian was hit by a vehicle.

For the second one, we did a similar thing but now intentionally being hit by a car
(Figure 5.2). We could validate then that the menu did open telling that we were hit, the log
"hasCrashed" variable was true, and that the closest car distance was 0. By looking at the player
position of -7.36 and 107.46 and the car positions, we can get that the car that hit us was the one
with identifier 20 and the compact model (section 4.1.5), and as expected hit us through the front
(z-axis), having a final position of -7.51 and 105.13. When we calculate the boundaries, we can
see that the car boundary extends to 107.18, while the player boundary goes to 107.26, making
the log position only 8cm off the real hit.
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5.1.3 Vehicle AI

The vehicle AI we created is composed of two main components, its path navigation system, and
the ray cast velocity control.

The first system makes the car target a certain speed, which we could verify was working
as intended by looking at the vehicles’ speed and state when going through a node. With this, we
could see that it did indeed increase its speed, by being on the "Accelerating" state, when its
speed was at least 5km/h lower than the target, keeping the speed when within the margins, and
decreasing when a lower speed node was in front of it. With relation to targeting the position, we
validated it by moving it out of its path, as seen in figure 4.9.

Finally, for the validation of the second system, we could first validate that it aims to
keep the 2s out zone by having the ray cast with a red color when close to another vehicle, with
their distance increasing with time until the ray is green again. We could also quantitatively test
its breaking precision, by having a pedestrian waiting, we logged the vehicle’s target stop point at
the point where it actually stopped. The positions x and z of the target were -7.5, 87.83, and the
vehicle stopped at the position: -7.49, 87.34, giving a distance of 49cm. We repeated this test 10
times to consider different vehicle types and small changes in their speeds, getting an average
distance of 75cm between the target and the point we stopped.
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6 CONCLUSION

This chapter concludes our study by summarizing and analyzing what we achieved. It also looks
at the possible applications of the work here developed. Finally, it will present future researches
that may be done to expand the work on pedestrian behaviour on the streets.

6.1 SUMMARY

In this work, we explored the current and past state of VR technology, looking at their strengths
and limitations. With this information as a basis, we developed a platform to study and analyze
pedestrian’s behaviour while crossing a street. After looking at past studies, we analyzed the
limitations of the pedestrian simulators developed in the past. Taking those into mind, we
developed a simulator that focused improved on those limitations, in order to study the behaviour
in multiple scenarios, with high fidelity.

The end result was a highly customizable simulator, which allows different researchers
to study specific topics as they need, by modifying the parameters of the scenes. The simulator is
able to run a suite of experiments defined by a researcher with no intervention, all while allowing
the real-time monitoring of those by making use of the Quest 2 built-in stream functionality.
The scenario was made diverse by the use of multiple vehicles models, with different colors
and randomization. The simulator, makes use of current design techniques, like light baking,
to improve the fidelity of the virtual environment without the need for a more powerful and
expensive device. The traffic created by the vehicles’ AI allows a complex world to be analyzed,
all while having human-like behaviour. By making use of a replay system, we were also able to
cater to all past and future metrics which may be used to analyze pedestrian behaviour, while still
giving a quick output for those who need simpler metrics.

With all this in mind, we conclude that the simulator developed in this work was able
to meet all of our original goals, with the prospect of being a powerful device for the study of
pedestrian behaviour.

6.2 POSSIBLE APPLICATIONS

A clear application, which was the focus of this work, is the use of the simulator here developed
on diverse experiments with the focus on analyzing pedestrian behaviour on the streets. With the
simulator here developed, new scenarios which were not possible to be studied before without
extensive development work, by making use of this platform, researchers can focus more on the
behaviour and less on the implementation of a new, complex system.

6.3 FUTURE WORKS

The topic of developing a virtual reality simulator to study the behaviour of pedestrians is
something that we expect will only keep getting more and more relevant with the advance of
automated vehicles. For instance, future researchers may want to test how humans will behave
in a complex traffic environment composed of vehicles that use AV techniques like machine
learning to drive, without focusing on simulated human driver behaviour.
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Another important area of study is making the simulator with the focus, not on data
collection and analysis, but instead, as a teaching research, studying the impact of those on their
behaviours at the transit.

More study can also be done on improving the capability of the vehicles, having them
able to do more scenarios, like changing lanes, overtaking other cars, avoiding obstacles, and
reducing the speed for a pedestrian that started the crossing to safely finish when it’s possible to
react on time.

Another point of study is improving the interaction between the human pedestrian
and the automated vehicles present on the simulator. Khartik et al. had some good results in
their work by giving visual cues to pedestrians about when the vehicle acknowledged and the
pedestrian intended to wield [18]. Though, carefulness must be taken in this area to not have
vehicles that can detect pedestrians in situations where it would not be true for a real driver,
teaching the wrong behaviour to the users.

With the advance of VR technology, we also expect simulators with higher visual fidelity
to be developed, improving further the sense of presence of the user in the virtual world. Finally,
while we tried to make our simulator as accessible as possible, we understand that for some
researchers the cost of a device like the Quest 2 may still be too expensive at this time. As such,
research can be done on adapting the simulator here developed to be able to run on smartphones,
using something like the Google cardboard platform, or even transforming it into an AR device
using the smartphone cameras and sensors.
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